首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:s-point finite refinable spaces
  • 本地全文:下载
  • 作者:Sheldon W. Davis ; Elise M. Grabner ; Gray C. Grabner
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1999
  • 卷号:22
  • 期号:2
  • 页码:367-375
  • DOI:10.1155/S0161171299223678
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    A space X is called s -point finite refinable ( d s -point finite refinable) provided every open cover 𝒰 of X has an open refinement 𝒱 such that, for some (closed discrete) C ⫅ X ,

    (i) for all nonempty V ∈ 𝒱 , V ∩ C ≠ ∅ and

    (ii) for all a ∈ C the set ( 𝒱 ) a = { V ∈ 𝒱 : a ∈ V } is finite.

    In this paper we distinguish these spaces, study their basic properties and raise several interesting questions. If λ is an ordinal with \omega$"> c f ( λ ) = λ > ω and S is a stationary subset of λ then S is not s -point finite refinable. Countably compact d s -point finite refinable spaces are compact. A space X is irreducible of order ω if and only if it is d s -point finite refinable. If X is a strongly collectionwise Hausdorff d s -point finite refinable space without isolated points then X is irreducible.

国家哲学社会科学文献中心版权所有