Solutions are obtained of boundary value problems for L n y + f ( x , L 0 y , … , L n − 2 y ) , satisfying L 2 y ( 0 ) = L n − 1 y ( 1 ) = 0 , 0 ≤ i ≤ n − 2 , where L i , denotes the i t h quasiderivative, and where f ( x , y 1 , … , y n − 1 ) has singularities at y i = 0 , 1 ≤ i ≤ n − 1 .