The solution space of the rectangular linear system A x = b , subject to x ≥ 0 , is called a polytope. An attempt is made to provide a deeper geometric insight, with numerical examples, into the condensed paper by Lord, et al. [1], that presents an algorithm to compute a center of a polytope. The algorithm is readily adopted for either sequential or parallel computer implementation. The computed center provides an initial feasible solution (interior point) of a linear programming problem.