首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Generalized Laplace transform with matrix variables
  • 本地全文:下载
  • 作者:R. M. Joshi ; J. M. C. Joshi
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1987
  • 卷号:10
  • 期号:3
  • 页码:503-511
  • DOI:10.1155/S0161171287000590
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In the present paper we have extended generalized Laplace transforms of Joshi to the space of m × m symmetric matrices using the confluent hypergeometric function of matrix argument defined by Herz as kernel. Our extension is given by 0} {f_1 F_1 \left( {\alpha:\beta: - \wedge z} \right)f\left( \wedge \right)d \wedge } \]" display="block"> g ( z ) = Γ m ( α ) Γ m ( β ) ∫ ∧ > 0 1 F 1 ( α : β : − ∧ z )  f ( ∧ ) d ∧

    The convergence of this integral under various conditions has also been discussed. The real and complex inversion theorems for the transform have been proved and it has also been established that Hankel transform of functions of matrix argument are limiting cases of the generalized Laplace transforms.

国家哲学社会科学文献中心版权所有