Let S λ ( A , B , p , α ) ( | λ | < π 2 , − 1 ≦ A < B ≦ 1 and 0 ≦ α < p ) , denote the class of functions f ( z ) = z p + ∑ n = p + 1 ∞ a n z n analytic in U = { z : | z | < 1 } , which satisfy for z = r e i θ ∈ U e i λ sec λ z f ′ ( z ) f ( z ) − i p tan λ = p + [ p B + ( A − B ) ( p − α ) ] w ( z ) 1 + B w ( z ) , w ( z ) is analytic in U with w ( 0 ) = 0 and | w ( z ) | ≦ | z | for z ∈ U . In this paper we obtain the bounds of a n and we maximize | a p + 2 − μ a p + 1 2 | over the class S λ ( A , B , p , α ) for complex values of μ .