首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On the non-existence of some interpolatory polynomials
  • 本地全文:下载
  • 作者:C. H. Anderson ; J. Prasad
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1986
  • 卷号:9
  • 期号:4
  • 页码:753-756
  • DOI:10.1155/S016117128600090X
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Here we prove that if x k , k = 1 , 2 , … , n + 2 are the zeros of ( 1 − x 2 ) T n ( x ) where T n ( x ) is the Tchebycheff polynomial of first kind of degree n , α j , β j , j = 1 , 2 , … , n + 2 and γ j , j = 1 , 2 , … , n + 1 are any real numbers there does not exist a unique polynomial Q 3 n + 3 ( x ) of degree ≤ 3 n + 3 satisfying the conditions: Q 3 n + 3 ( x j ) = α j , Q 3 n + 3 ( x j ) = β j , j = 1 , 2 , … , n + 2 and Q ‴ 3 n + 3 ( x j ) = γ j , j = 2 , 3 , … , n + 1 . Similar result is also obtained by choosing the roots of ( 1 − x 2 ) P n ( x ) as the nodes of interpolation where P n ( x ) is the Legendre polynomial of degree n .

国家哲学社会科学文献中心版权所有