首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Admissible groups, symmetric factor sets, and simple algebras
  • 本地全文:下载
  • 作者:R. A. Mollin
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1984
  • 卷号:7
  • 期号:4
  • 页码:707-711
  • DOI:10.1155/S0161171284000739
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Let K be a field of characteristic zero and suppose that D is a K -division algebra; i.e. a finite dimensional division algebra over K with center K . In Mollin [1] we proved that if K contains no non-trivial odd order roots of unity, then every finite odd order subgroup of D * the multiplicative group of D , is cyclic. The first main result of this paper is to generalize (and simplify the proof of) the above. Next we generalize and investigate the concept of admissible groups. Finally we provide necessary and sufficient conditions for a simple algebra, with an abelian maximal subfield, to be isomorphic to a tensor product of cyclic algebras. The latter is achieved via symmetric factor sets.

国家哲学社会科学文献中心版权所有