首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Periodic rings with commuting nilpotents
  • 本地全文:下载
  • 作者:Hazar Abu-Khuzam ; Adil Yaqub
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1984
  • 卷号:7
  • 期号:2
  • 页码:403-406
  • DOI:10.1155/S0161171284000417
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Let R be a ring (not necessarily with identity) and let N denote the set of nilpotent elements of R . Suppose that (i) N is commutative, (ii) for every x in R , there exists a positive integer k = k ( x ) and a polynomial f ( λ ) = f x ( λ ) with integer coefficients such that x k = x k + 1 f ( x ) , (iii) the set I n = { x | x n = x } where n is a fixed integer, 1$"> n > 1 , is an ideal in R . Then R is a subdirect sum of finite fields of at most n elements and a nil commutative ring. This theorem, generalizes the “ x n = x ” theorem of Jacobson, and (taking n = 2 ) also yields the well known structure of a Boolean ring. An Example is given which shows that this theorem need not be true if we merely assume that I n is a subring of R .

国家哲学社会科学文献中心版权所有