首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Remainders of power series
  • 本地全文:下载
  • 作者:J. D. McCall ; G. H. Fricke ; W. A. Beyer
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1979
  • 卷号:2
  • 期号:2
  • 页码:239-250
  • DOI:10.1155/S0161171279000223
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Suppose ∑ n = 0 ∞ a n z n has radius of convergence R and σ N ( z ) = | ∑ n = N ∞ a n z n | . Suppose | z 1 | < | z 2 | < R , and T is either z 2 or a neighborhood of z 2 . Put \sigma _N \left( z \right){\text{ for }}z\varepsilon T} \right\}$"> S = { N | σ N ( z 1 ) > σ N ( z )  for  z ϵ T } . Two questions are asked: (a) can S be cofinite? (b) can S be infinite? This paper provides some answers to these questions. The answer to (a) is no, even if T = z 2 . The answer to (b) is no, for T = z 2 if lim a n = a ≠ 0 . Examples show (b) is possible if T = z 2 and for T a neighborhood of z 2 .

国家哲学社会科学文献中心版权所有