We present here assessment of the latent market information embedded in the raw, affinity (normalized), and partial correlations. We compared the Zipf plot, spectrum, and distribution of the eigenvalues for each matrix with the results of the corresponding random matrix. The analysis was performed on stocks belonging to the New York and Tel Aviv Stock Exchange, for the time period of January 2000 to March 2009. Our results show that in comparison to the raw correlations, the affinity matrices highlight the dominant factors of the system, and the partial correlation matrices contain more information. We propose that significant stock market information, which cannot be captured by the raw correlations, is embedded in the affinity and partial correlations. Our results further demonstrate the differences between NY and TA markets.