首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Interacted Multiple Ant Colonies Optimization Approach to Enhance the Performance of Ant Colony Optimization Algorithms
  • 本地全文:下载
  • 作者:Alaa Aljanaby ; Ku Ruhana Ku-Mahamud ; Norita Norwawi
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2010
  • 卷号:3
  • 期号:1
  • 页码:29
  • DOI:10.5539/cis.v3n1p29
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    One direction of ant colony optimization researches is dividing the ants’ population into several colonies. These colonies work together to collectively solve an optimization problem. This approach offers good opportunity to explore a large area of the search space. It seems to be a suitable approach to improve the performance of ant algorithms. This paper proposes a new generic algorithmic approach utilizing multiple ant colonies with some new interaction techniques. Computational test shows promising results of the new approach. The proposed approach outperforms the single colony ant algorithms in term of the solution quality with the same computational effort.

国家哲学社会科学文献中心版权所有