首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:An Optimised Method-Based an Improved Neural Network Classifier
  • 本地全文:下载
  • 作者:Mengxin Li ; Chengdong Wu ; Hui Lin
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2009
  • 卷号:2
  • 期号:3
  • 页码:137
  • DOI:10.5539/cis.v2n3p137
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    A hybrid method is presented to accelerate network training for traditional BP networks and to improve the classification accuracy of features for automatic visual inspection of wood veneers. In order to achieve an optimal network structure, the uniform design method is employed to optimise the parameters taking advantage of typical experimental data and good data representation, and the optimal combination is confirmed using a nonlinear quadratic programming (NLPQL) from a response surface model. , and the ‘best’ level-combination is obtained to further improve the performance of the hybrid classifier. By comparison, the classifier using the optimal factors shows more powerful performance with a classification accuracy of 98.99% and a fast speed, which means greater potential for practical applications.

国家哲学社会科学文献中心版权所有