首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Tracking with Estimate-Conditioned Debiased 2-D Converted Measurements
  • 本地全文:下载
  • 作者:John N. Spitzmiller ; Reza R. Adhami
  • 期刊名称:Intelligent Information Management
  • 印刷版ISSN:2150-8194
  • 电子版ISSN:2150-8208
  • 出版年度:2010
  • 卷号:2
  • 期号:4
  • 页码:286-294
  • DOI:10.4236/iim.2010.23033
  • 出版社:Scientific Research Publishing
  • 摘要:This paper describes a new algorithm for the 2D converted-measurement Kalman filter (CMKF) which estimates a target’s Cartesian state given polar position measurements. At each processing index, the new algorithm chooses the more accurate of (1) the sensor’s polar position measurement and (2) the CMKF’s Cartesian position prediction. The new algorithm then computes the raw converted measurement’s error bias and the corresponding debiased converted measurement’s error covariance conditioned on the chosen position estimate. The paper derives explicit expressions for the polar-measurement-conditioned bias and covariance and shows the resulting polar-measurement-conditioned CMKF’s mathematical equivalence with the 2D modified unbiased CMKF (MUCMKF). The paper also describes a method, based upon the unscented transformation, for approximating the raw converted measurement’s error bias and the debiased converted measurement’s error covariance conditioned on the CMKF’s Cartesian position prediction. Simulation results demonstrate the new CMKF’s improved tracking performance and statistical credibility as compared to those of the 2D MUCMKF.
  • 关键词:Tracking; Converted Measurements; Kalman Filter; Unscented Transformation
国家哲学社会科学文献中心版权所有