首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Particle Filtering Optimized by Swarm Intelligence Algorithm
  • 本地全文:下载
  • 作者:Wei Jing ; Hai Zhao ; Chunhe Song
  • 期刊名称:Journal of Intelligent Learning Systems and Applications
  • 印刷版ISSN:2150-8402
  • 电子版ISSN:2150-8410
  • 出版年度:2010
  • 卷号:2
  • 期号:1
  • 页码:49-53
  • DOI:10.4236/jilsa.2010.21007
  • 出版社:Scientific Research Publishing
  • 摘要:A new filtering algorithm — PSO-UPF was proposed for nonlinear dynamic systems. Basing on the concept of re-sampling, particles with bigger weights should be re-sampled more time, and in the PSO-UPF, after calculating the weight of particles, some particles will join in the refining process, which means that these particles will move to the region with higher weights. This process can be regarded as one-step predefined PSO process, so the proposed algo-rithm is named PSO-UPF. Although the PSO process increases the computing load of PSO-UPF, but the refined weights may make the proposed distribution more closed to the poster distribution. The proposed PSO-UPF algorithm was compared with other several filtering algorithms and the simulating results show that means and variances of PSO-UPF are lower than other filtering algorithms.
  • 关键词:Filtering Method; Particle Filtering; Unscented Kalman Filter; Particle Swarm Optimizer
国家哲学社会科学文献中心版权所有