标题:Non-cell autonomous impairment of oligodendrocyte differentiation precedes CNS degeneration in the Zitter rat: Implications of macrophage/microglial activation in the pathogenesis
摘要:Background The zitter ( zi/zi ) rat, a loss-of-function mutant of the glycosylated transmembrane protein attractin (atrn), exhibits widespread age-dependent spongiform degeneration, hypomyelination, and abnormal metabolism of reactive oxygen species (ROS) in the brain. To date, the mechanisms underlying these phenotypes have remained unclear. Results Here, we show differentiation defects in zi/zi oligodendrocytes, accompanied by aberrant extension of cell-processes and hypomyelination. Axonal bundles were relatively preserved during postnatal development. With increasing in age, the injured oligodendrocytes in zi/zi rats become pathological, as evidenced by the accumulation of iron in their cell bodies. Immunohistochemical analysis revealed that atrn expression was absent from an oligodendrocyte lineage, including A2B5-positive progenitors and CNPase-positive differentiated cells. The number and distribution of Olig2-positive oligodendrocyte progenitors was unchanged in the zi/zi brain. Furthermore, an in vitro differentiation assay of cultured oligodendrocyte progenitors prepared from zi/zi brains revealed their normal competence for proliferation and differentiation into mature oligodendrocytes. Interestingly, we demonstrated the accelerated recruitment of ED1-positive macrophages/microglia to the developing zi/zi brain parenchyma prior to the onset of hypomyelination. Semiquantitative RT-PCR analysis revealed a significant up-regulation of CD26 and IL1-β in the zi/zi brain during this early postnatal stage. Conclusion We demonstrated that the onset of the impairment of oligodendrocyte differentiation occurs in a non-cell autonomous manner in zi/zi rats. Hypomyelination of oligodendrocytes was not due to a failure of the intrinsic program of oligodendrocytes, but rather, was caused by extrinsic factors that interrupt oligodendrocyte development. It is likely that macrophage/microglial activation in the zi/zi CNS leads to disturbances in oligodendrocyte differentiation via deleterious extrinsic factors, such as the cytokine IL1-β or ROS. Atrn might be involved in the activation of brain macrophages/microglia by suppressing excessive migration of monocytes into the CNS, or by accelerating the transformation of brain monocytes into resting microglia. Understanding the pathogenesis of the zi/zi rat may provide novel insights into the developmental interaction betweens macrophages/microglia and cells of an oligodendrocyte lineage.