摘要:Cost utility analysis (CUA) using SF-36/SF-12 data has been facilitated by the development of several preference-based algorithms. The purpose of this study was to illustrate how decision-making could be affected by the choice of preference-based algorithms for the SF-36 and SF-12, and provide some guidance on selecting an appropriate algorithm. Two sets of data were used: (1) a clinical trial of adult asthma patients; and (2) a longitudinal study of post-stroke patients. Incremental costs were assumed to be $2000 per year over standard treatment, and QALY gains realized over a 1-year period. Ten published algorithms were identified, denoted by first author: Brazier (SF-36), Brazier (SF-12), Shmueli, Fryback, Lundberg, Nichol, Franks (3 algorithms), and Lawrence. Incremental cost-utility ratios (ICURs) for each algorithm, stated in dollars per quality-adjusted life year ($/QALY), were ranked and compared between datasets. In the asthma patients, estimated ICURs ranged from Lawrence's SF-12 algorithm at $30,769/QALY (95% CI: 26,316 to 36,697) to Brazier's SF-36 algorithm at $63,492/QALY (95% CI: 48,780 to 83,333). ICURs for the stroke cohort varied slightly more dramatically. The MEPS-based algorithm by Franks et al. provided the lowest ICUR at $27,972/QALY (95% CI: 20,942 to 41,667). The Fryback and Shmueli algorithms provided ICURs that were greater than $50,000/QALY and did not have confidence intervals that overlapped with most of the other algorithms. The ICUR-based ranking of algorithms was strongly correlated between the asthma and stroke datasets (r = 0.60). SF-36/SF-12 preference-based algorithms produced a wide range of ICURs that could potentially lead to different reimbursement decisions. Brazier's SF-36 and SF-12 algorithms have a strong methodological and theoretical basis and tended to generate relatively higher ICUR estimates, considerations that support a preference for these algorithms over the alternatives. The
关键词:Fluticasone Propionate ; Cost Utility Analysis ; Medical Expenditure Panel Survey ; Ordinary Little Square Model ; Health State Valuation