This work evaluates the performance of high-resolution quadratic time-frequency distributions (TFDs) including the ones obtained by the reassignment method, the optimal radially Gaussian kernel method, the t-f autoregressive moving-average spectral estimation method and the neural network-based method. The approaches are rigorously compared to each other using several objective measures. Experimental results show that the neural network-based TFDs are better in concentration and resolution performance based on various examples.