首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage
  • 本地全文:下载
  • 作者:Liang Xiao ; Li-Li Huang ; Badrinath Roysam
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/398410
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details.

国家哲学社会科学文献中心版权所有