首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Novel Kernel-Based Recognizers of Human Actions
  • 本地全文:下载
  • 作者:Somayeh Danafar ; Alessandro Giusti ; Jürgen Schmidhuber
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/202768
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We study unsupervised and supervised recognition of human actions in video sequences. The videos are represented by probability distributions and then meaningfully compared in a probabilistic framework. We introduce two novel approaches outperforming state-of-the-art algorithms when tested on the KTH and Weizmann public datasets: an unsupervised nonparametric kernel-based method exploiting the Maximum Mean Discrepancy test statistic; and a supervised method based on Support Vector Machine with a characteristic kernel specifically tailored to histogram-based information.

国家哲学社会科学文献中心版权所有