首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans
  • 本地全文:下载
  • 作者:Marishka K Brown ; Yuan Luo
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2009
  • 卷号:10
  • 期号:1
  • 页码:1
  • DOI:10.1186/1471-2202-10-62
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Background Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide in vitro have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode C. elegans . The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested. Results We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants ( ser-4, mod-1 ), but not in the 5-HT transporter ( mod-5 ) or synthesis ( tph-1 ) mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor mod-1 and dopamine defective cat-2 mutants, but only partially blocked in ser-4 mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic C. elegans strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition. Conclusion These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.
国家哲学社会科学文献中心版权所有