首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:A role for Seven in Absentia Homolog (Siah1a) in metabotropic glutamate receptor signaling
  • 本地全文:下载
  • 作者:Paul J Kammermeier ; Stephen R Ikeda
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2001
  • 卷号:2
  • 期号:1
  • 页码:1
  • DOI:10.1186/1471-2202-2-15
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Background The mammalian homologue of Seven in Absentia (Siah) can act in the ubiquitin/proteasome pathway. Recent work has shown that Siah can bind group I metabotropic glutamate receptors (mGluRs), but the functional consequences of this interaction are unknown. Results The effects of coexpression of Siah on group I mGluR signaling were examined using heterologous expression in rat sympathetic, superior cervical ganglion neurons. Siah1a attenuated heterologously expressed group I mGluR-mediated calcium current inhibition, but was without effect on group II mGluR- or NE-mediated calcium current modulation via heterologously expressed mGluR2 or native a2 adrenergic receptors, respectively, indicating that the effect of Siah was specific for group I mGluRs. Surface expression and subcellular distribution of group I mGluRs were not detectably altered in the presence of Siah1a as assessed by immunoflourescence experiments with epitope tagged receptors and imaging of a GFP/mGluR fusion construct. In addition, an N-terminal Siah deletion construct, which cannot function in the proteolysis pathway, displayed effects similar to the wild type Siah1a. Finally, coexpression of calmodulin, which competes with Siah1a for binding to the C-terminal tail of group I mGluRs, reversed the effect of Siah1a on mGluR-mediated signaling. Conclusions These data supported the conclusion that the attenuation of mGluR signaling induced by Siah1a expression was likely a direct consequence of Siah/mGluR association rather than a result of targeting of the receptors to the proteosome. In addition, the data suggest that the binding of CaM and Siah may play an important role in the regulation of group I mGluR function.
国家哲学社会科学文献中心版权所有