首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Function Approximation Using Robust Radial Basis Function Networks
  • 本地全文:下载
  • 作者:Oleg Rudenko ; Oleksandr Bezsonov
  • 期刊名称:Journal of Intelligent Learning Systems and Applications
  • 印刷版ISSN:2150-8402
  • 电子版ISSN:2150-8410
  • 出版年度:2011
  • 卷号:3
  • 期号:1
  • 页码:17-25
  • DOI:10.4236/jilsa.2011.31003
  • 出版社:Scientific Research Publishing
  • 摘要:Resistant training in radial basis function (RBF) networks is the topic of this paper. In this paper, one modification of Gauss-Newton training algorithm based on the theory of robust regression for dealing with outliers in the framework of function approximation, system identification and control is proposed. This modification combines the numerical ro- bustness of a particular class of non-quadratic estimators known as M-estimators in Statistics and dead-zone. The al- gorithms is tested on some examples, and the results show that the proposed algorithm not only eliminates the influence of the outliers but has better convergence rate then the standard Gauss-Newton algorithm.
  • 关键词:Neural Network; Robust Training; Basis Function; Dead Zone
国家哲学社会科学文献中心版权所有