Are we on the brink of a new little ice age? Potential cooling of the oceans and atmosphere is twice as large as was experienced in the worst winters of the past century in the eastern U.S. and is likely to persist for decades to centuries after a climate transition occurs - Science & Technology
Terrence M. JoyceWHEN MOST OF US think about ice ages, we imagine a slow transition into a colder climate on long time scales. Indeed, studies of the past million years have shown a repeatable cycle of Earth's climate going from warm periods (interglacial, as we now experience) to glacial conditions, with periods related to changes of the tilt of the rotation axis of Earth (41,000-year period); in the orientation of the elliptical orbit of the Earth around the sun (23,000-year period), called precession of the equinoxes; and in the eccentricity of the elliptical orbit (100,000 years). Ice age conditions generally occur when all of the above conspire to create a minimum of summer sunlight on the arctic regions of the planet, although the ice age cycle is global in nature and occurs in phase in the Northern and Southern hemispheres. It profoundly affects distribution of ice over lands and ocean: atmospheric temperatures and circulation: trod ocean temperatures and circulation, both at the ocean surface and at great depth.
The orbital forcing mechanism was first pointed out by James Croll in the 19th century and developed more fully by Milutin Milankovitch in 1938. Over longer durations, it has been speculated that cycles in the Earth's motion about the center of the galaxy are important. Yet, humans are short-lived, and perhaps only academics and museums are interested in long-term changes in the past. Since the end of the present interglacial and the slow march to the next ice age may be several millennia away, why should we care? In fact. won't the buildup of carbon dioxide (C[O.sub.2]) and other greenhouse gases possibly ameliorate future changes? Indeed, various groups advocate the benefits of global warming, such as the Greening Earth Society in the U.S. and the Subtropical Russia Movement. Some in the latter group even advocate active intervention to accelerate the process, seeing this as an opportunity to turn much of cold, austere northern Russia into a subtropical paradise.
Evidence has mounted that global warming began in the last century and that man may be in part responsible. Both the Intergovernmental Panel on Climate Change (IPCC) and National Academy of Sciences have concurred. Computer models are being used to predict climate change under different scenarios of greenhouse forcing, and the Kyoto Protocol has advocated active measures to reduce C[O.sub.2] emissions which contribute to warming. Thinking is centered around slow changes to our climate and how they will affect humans and the habitability of our planet. Yet, this thinking is flawed, since it ignores the well-established fact that Earth's climate has changed rapidly in the past and could do so in the future. The issue centers around a paradox--that global warming could instigate a new Little Ice Age in the Northern Hemisphere.
Evidence for abrupt climate change is readily apparent in ice cores taken from Greenland and Antarctica. One sees clear indications of long-term changes discussed above, with CO2 and proxy temperature changes associated with the last ice age and its transition into our present interglacial period of warmth. In addition, there is a strong chaotic variation of properties with a quasi-period of around 1,500 years, We say chaotic because these millennial shifts look like anything but regular oscillations, Rather, they resemble rapid, decadal-long transitions between a cold and warm climate, with lengthy interludes occurring in one of the two states.
The best-known example of these events is the Younger Dryas cooling of about 12,000 years ago, named for the arctic wildflower remains identified in northern European sediments. This event began and ended within a decade, and, lot its 1,000-year duration, the North Atlantic region was about five degrees colder. The lack of periodicity and the present failure to isolate a stable forcing mechanism a la Milankovitch have prompted much scientific debate about the cause of the Younger Dryas and other millennial scale events. Indeed, the Younger Dryas occurred at a time when orbital forcing should have continued to drive climate to the present warm state.
A book that reviews evidence for abrupt climate change and speculates on the mechanisms was published in 2002 by an expert group commissioned by the National Academy of Sciences. Abrupt Climate Change contains a breadth and depth of discussion which we cannot hope to match here. Presently, there is just one viable mechanism identified in the report that may play a major role in determining the stable states of our climate and what causes transitions between them. This involves ocean dynamics.
In order to balance the excess heating near the Equator and cooling at the poles of the Earth, the atmosphere and ocean together transport heat from low to high latitudes. Warmer surface water is cooled at high latitudes, releasing heat to the atmosphere, which is then radiated away to space. This heat engine operates to reduce Equator-to-pole temperature differences and is a prime moderating mechanism for climate on Earth, Warmer ocean surface temperatures at low latitudes also release water vapor through an excess of evaporation over precipitation to the atmosphere, and this water vapor is transported poleward in the atmosphere along with a portion of the excess heat. At high latitudes where the atmosphere cools, this water vapor falls out as an excess of precipitation over evaporation.
A second important component of our climate system is the hydrologic cycle. As the ocean waters are cooled in their' poleward journey, they become denser. If sufficiently cooled, they can sink to great depths in the ocean, forming cold dense flows that spread Equatorward, thus returning the warm surface flow entering and warming the high-latitude oceans.
The cycle is completed by oceanic mixing, a process that slowly converts the cold deep waters to warm surface waters. Thus, surface forcing and internal mixing are two major players in this overturning circulation, called the great ocean conveyor. The waters moving poleward are relatively salty due to more evaporation at low latitudes, which increases surface salinity. At higher latitudes, surface waters become fresher as a consequence of the dominance of precipitation over evaporation. The freshening tendency makes the surface water more buoyant and therefore acts to oppose the cooling tendency. If the freshening is sufficiently large, the surface waters may not be dense enough to sink to great depths in the ocean, thus inhibiting the action of the ocean conveyor and upsetting one important part of the Earth's heating system
This system of regulation does not operate the same in all oceans. The Asian continent limits the northern extent of the Indian Ocean to the tropics, and deep water does not presently form in the North Pacific, since surface waters are just too fresh. Our present climate is such that cold deep waters are formed around Antarctica and in the North Atlantic Ocean. The conveyor circulation increases by about 50% the northward transport of warmer waters in the Gulf Stream at mid latitudes over what is expected by the wind-driven transport.
Our limited knowledge of ocean climate on long time scales, extracted from the analysis of sediment cores taken around the world's oceans, has generally implicated the North Atlantic as the most-unstable member of the conveyor. During millennial periods of cold climate, North Atlantic deep water (NADW) formation either stopped or was seriously reduced. This generally has followed periods of large freshwater discharge into the northern North Atlantic caused by rapid melting of glacial or multiyear ice in the Arctic Basin. It is thought that these fresh waters, which have been transported into the regions of deep water formation, have interrupted the conveyor by overcoming the high latitude cooling effect with excessive freshening.
The ocean conveyor need not stop entirely when the NADW formation is curtailed. It can continue at shallower depths in the North Atlantic and persist in the Antarctic Ocean, where bottom water formation continues or is even accelerated. Yet, a disruption of the northern limb of the overturning circulation will affect the heat balance of the Northern Hemisphere and could affect both the oceanic and atmospheric climate. Model calculations have indicated the potential for cooling of three-five degrees Celsius in the oceans and atmosphere should a total disruption occur. This is one-third to one-half the temperature drop experienced during major ice ages.
These changes are twice as large as those experienced in the worst winters of the past century in the eastern U.S. and are likely to persist for decades to centuries after a climate transition occurs. They are of a magnitude comparable to the Little Ice Age, which had profound effects on human settlements in Europe and North America during the 16th through 18th centuries. The issue of their geographic extent is in doubt. It might be limited to regions bounding the North Atlantic.
High-latitude temperature changes in the ocean are much less capable of affecting the global atmosphere than low-latitude ones such as produced by El Nino. Whether the pathway for propagation of climate change is atmospheric or oceanic, or if changes in oceanic and terrestrial sequestration of carbon may globalize effects of climate change, as suspected for glacial/interglacial climate changes, is an open question. Yet, we begin to approach how the paradox mentioned above can happen. Global warming can induce a colder climate for many of us.
Consider some observations of oceanic change over the modern instrumental record going back 40 years. During this time interval, we have observed a rise in mean global temperatures. Because of its large heat capacity, the oceans have registered small, but significant, growth in temperature. The largest increases are in the near-surface waters, but warming has been measurable to depths as great as 3,000 miles in the North Atlantic. Superimposed on this long-term increase are interannual and decadal changes that often obscure these trends, causing regional variability and cooling in some regions, and wanning in others. Added to this is recent evidence that the high-latitude oceans have freshened, while the subtropics and tropics have become saltier.
These possible changes in the hydrological cycle have not been limited to the North Atlantic, but have been seen in all major oceans. Yet, it is the North Atlantic where they can act to disrupt the overturning circulation and cause a rapid climate transition. A high-latitude buildup of freshwater over this time period equivalent to about three-four inches has lowered water column salinities throughout the subpolar North Atlantic to more than 2,000 miles. At the same time, subtropical and northern tropical salinities have increased.
The degree to which the two effects balance out in terms of freshwater is important for climate change. If the next effect is a lowering of salinity, then freshwater must have been added from other sources--river runoff, melting of multiyear arctic ice, or glaciers. A flooding of the northern Atlantic with freshwater from these various sources has the potential to reduce or even disrupt the overturning circulation. Whether or not the latter will happen is the nexus of the situation, and one which is hardest to predict with confidence. At present, we do not even have a system in place for monitoring the overturning circulation.
Models of the overturning circulation have been shown to be very sensitive to how internal mixing is parameterized. Recall that internal mixing of heat and salt is an integral part of the overturning circulation problem. A recent study has shown that, for a model with constant vertical mixing, commonly used in coupled ocean-atmosphere climate runs, there is just one stable climate state--our present one, with substantial sinking and dense water formation in the northern North Atlantic.
With a slightly different formulation, more consistent with some recent measurements of oceanic mixing rates that are small near the surface and become larger over rough bottom topography, it has been found that a second stable state emerges with little or no deepwater production in the northern North Atlantic. The existence of a second stable state is crucial to understanding when and if abrupt climate change occurs. When it occurs in model runs and in geological data, it is invariably linked to the rapid addition of freshwater at high northern latitudes.
Predicting change
Thus, perhaps, one can begin to see the scope of the problem. In addition to incorporating a terrestrial biosphere and polar ice, which both play a large role in the reflectivity of solar radiation, one has to parameterize accurately mixing which occurs on centimeter to tens of centimeter scales in the ocean, and one has to produce long coupled global climate runs of many centuries! This is a daunting task, but it is necessary before we can confidently rely on models to predict future climate change.
Besides needing believable models that can accurately predict climate change, we require data that can properly initialize them. Errors in initial data can lead to poor atmospheric predictions in several days. So, one sure pathway to better weather predictions is better initial data. For the ocean, our data coverage is wholly inadequate. We can't say now what the overturning circulation looks like with any confidence and are faced with the task of predicting what it may be like in 10 years! Efforts are under way to remedy this.
Global coverage of upper ocean temperature and salinity measurements with autonomous floats is well within our capability within the next decade, as are surface measures of wind stress and ocean circulation from satellites. The measurement of deep flows is harder, but knowledge about the locations of critical avenues of dense water flows exists, and efforts are under way to measure them in some key locations with moored arrays.
Our knowledge about past climate change is limited as well. There are just a handful of high-resolution ice core climate records of the past 100,000 years, and even fewer ocean records of comparable resolution. Better definition of past climate states is needed not only in and of itself, but to be used by modelers to test their best climate models in reproducing what we know happened in the past before believing model projections about the future. We are not there yet, and progress needs to be made on better data and improved models before we can begin to answer some critical questions about future climate change.
Researchers always tell you that more funding is needed, and we are not any different. Our main message is not just that, however. It is that global climate is moving in a direction that makes abrupt climate change more probable, that these dynamics lie beyond the capability of many of the models used in IPCC reports, and the consequences of ignoring this may be large. For those of us living around the edge of the North Atlantic Ocean, we may be planning for climate scenarios of global wanning that are opposite to what might actually occur.
Terrence M. Joyce and Lloyd Keigwin are senior scientists, Woods Hole (Mass.) Oceanographic Institution.
COPYRIGHT 2003 Society for the Advancement of Education
COPYRIGHT 2003 Gale Group