首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model
  • 本地全文:下载
  • 作者:Sonia Jain ; Radford M. Neal
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2007
  • 卷号:2
  • 期号:3
  • 页码:445-472
  • 出版社:International Society for Bayesian Analysis
  • 摘要:The inferential problem of associating data to mixture components is dif- cult when components are nearby or overlapping. We introduce a new split-merge Markov chain Monte Carlo technique that eciently classi es observations by splitting and merging mixture components of a nonconjugate Dirichlet process mixture model. Our method, which is a Metropolis-Hastings procedure with split-merge proposals, samples clusters of observations simultaneously rather than incrementally assigning observations to mixture components. Split-merge moves are produced by exploiting properties of a restricted Gibbs sampling scan. A simulation study compares the new split-merge technique to a nonconjugate version of Gibbs sampling and an incremental Metropolis- Hastings technique. The results demonstrate the improved performance of the new sampler.
  • 关键词:Bayesian model, Markov chain Monte Carlo, split-merge moves, nonconjugate prior
国家哲学社会科学文献中心版权所有