首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Risk Leveling of Network Traffic Anomalies
  • 本地全文:下载
  • 作者:Charlie Isaksson ; Yu Meng ; Margaret H.
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2006
  • 卷号:6
  • 期号:6
  • 页码:258-265
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:The goal of intrusion detection is to identify attempted or ongoing attacks on a computer system or network. Many attacks aim to compromise computer networks in an online manner. Traffic anomalies have been an important indication of such attacks. Challenges in the detections lie in modeling of the large continuous streams of data and performing anomaly detection in an online manner. This paper presents a data mining technique to assess the risks of local anomalies based on synopsis obtained from a global spatiotemporal modeling approach. The proposed model is proactive in the detection of various types of traffic related attacks such as distributed denial of service (DDoS). It is incremental, scalable and thus suitable for online processing. Algorithm analysis shows the time efficiency of the proposed technique. The experiments conducted with a DARPA dataset demonstrate that compared with a frequency based anomaly detection model, the false alarm rate caused by the proposed model is significantly mitigated without losing a high detection rate.
  • 关键词:data mining, risk leveling, intrusion detection, anomaly, data stream
国家哲学社会科学文献中心版权所有