期刊名称:International Journal of Computer Science and Network Security
印刷版ISSN:1738-7906
出版年度:2006
卷号:6
期号:2B
页码:107-107~115
出版社:International Journal of Computer Science and Network Security
摘要:Recently high-speed networks have been utilized by attackers as Distributed Denial of Service (DDoS) attack infrastructure. Services on high-speed networks also have been attacked by successive waves of the DDoS attacks. How to sensitively and accurately detect the attack traffic, and quickly filter out the attack packets are still the major challenges in DDoS defense. Unfortunately most current defense approaches can not efficiently fulfill these tasks. Our approach is to find the network anomalies by using neural network and classify DDoS packets by a Bloom filter-based classifier (BFC). BFC is a set of space-efficient data structures and algorithms for packet classification. The evaluation results show that the simple complexity, high classification speed and accuracy and low storage requirements of this classifier make it not only suitable for DDoS filtering in high-speed networks, but also suitable for other applications such as string matching for intrusion detection systems and IP lookup for programmable routers.