首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Accurate Fault Location of EHV Teed Feeder using RBFNN
  • 本地全文:下载
  • 作者:Eyada A. J. Alanzi ; Mohd Zaid Abdullah, Nor ; Ashidi Mat Isa
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2007
  • 卷号:7
  • 期号:12
  • 页码:282-286
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:This paper presents a new technique of accurate fault location system using artificial neural networks (ANN) for EHV teed feeder transmission lines. This technique utilizes voltage and current waveforms from one side of the three branches of the network to determine the accurate fault location. Variety of fault conditions are analyzed, trained and tested by the radial basis function neural network (RBFNN) using MATLAB. Fault detection, branch determination, fault classification and fault location are practiced. Results are obtained from training and testing of RBFNN and using ATP-EMTP for simulation of faulted data from a 500KV teed feeder transmission system.
  • 关键词:Fault locator, Teed feeders, RBFNN
国家哲学社会科学文献中心版权所有