首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning
  • 本地全文:下载
  • 作者:T. Srikanth, V. kamala
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2008
  • 卷号:8
  • 期号:6
  • 页码:189-193
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:Surface roughness, an indicator of surface quality is one of the most specified customer requirements in a machining process. For efficient use of machine tools, optimum cutting parameters (speed, feed and depth of cut) are required. So it is necessary to find a suitable optimization method which can find optimum values of cutting parameters for minimizing surface roughness. The turning process parameter optimization is highly constrained and nonlinear, so this paper proposes a real coded genetic algorithm (RCGA) to find optimum cutting parameters. This paper explains various issues of RCGA and its advantages over the existing approach of binary coded genetic algorithm. The results obtained, conclude that RCGA is reliable and accurate for solving the cutting parameter optimization.
  • 关键词:Real Coded Genetic Algorithm, Turning, Cutting Parameters, Optimization, Surface roughness
国家哲学社会科学文献中心版权所有