首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:"Learning Symbolic Models of Stochastic Domains",
  • 本地全文:下载
  • 作者:H. M. Pasula ; L. S. Zettlemoyer ; L. P. Kaelbling
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2007
  • 卷号:29
  • 页码:309-352
  • 出版社:American Association of Artificial
  • 摘要:In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demonstrate that this learning algorithm allows agents to effectively model world dynamics.
国家哲学社会科学文献中心版权所有