期刊名称:International Journal of Computer Systems Science and Engineering
印刷版ISSN:1307-430X
出版年度:2007
卷号:03
期号:04
页码:186-186
出版社:World Academy of Science, Engineering and Technology
摘要:Intelligent systems based on machine learning
techniques, such as classification, clustering, are gaining wide spread
popularity in real world applications. This paper presents work on
developing a software system for predicting crop yield, for example
oil-palm yield, from climate and plantation data. At the core of our
system is a method for unsupervised partitioning of data for finding
spatio-temporal patterns in climate data using kernel methods which
offer strength to deal with complex data. This work gets inspiration
from the notion that a non-linear data transformation into some high
dimensional feature space increases the possibility of linear
separability of the patterns in the transformed space. Therefore, it
simplifies exploration of the associated structure in the data. Kernel
methods implicitly perform a non-linear mapping of the input data
into a high dimensional feature space by replacing the inner products
with an appropriate positive definite function. In this paper we
present a robust weighted kernel k-means algorithm incorporating
spatial constraints for clustering the data. The proposed algorithm
can effectively handle noise, outliers and auto-correlation in the
spatial data, for effective and efficient data analysis by exploring
patterns and structures in the data, and thus can be used for
predicting oil-palm yield by analyzing various factors affecting the
yield.