首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Relational Association Rules and Error Detection
  • 本地全文:下载
  • 作者:A. Câmpan ; G. Şerban ; A. Marcus
  • 期刊名称:Studia Universitatis Babes-Bolyai : Series Informatica
  • 印刷版ISSN:1224-869X
  • 出版年度:2006
  • 卷号:LI
  • 期号:01
  • 页码:31-31
  • 出版社:Babes-Bolyai University, Cluj-Napoca
  • 摘要:In this paper we introduce a new kind of association rules, rela- tional association rules, which are an extension of ordinal association rules ([1]). The relational association rules can express various kinds of relation- ships between record attributes, not only partial ordering relations. We use the discovery of relational association rules for detecting errors in data sets. We report a case study for a real data set which validates this data cleaning approach and shows the utility of relational rules.
  • 关键词:Data Mining, Relational Association Rules, Data Cleaning.
国家哲学社会科学文献中心版权所有