首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Comparison of Clustering Techniques in Aspect Mining
  • 本地全文:下载
  • 作者:G. Şerban, G. S. Moldovan
  • 期刊名称:Studia Universitatis Babes-Bolyai : Series Informatica
  • 印刷版ISSN:1224-869X
  • 出版年度:2006
  • 卷号:LI
  • 期号:01
  • 页码:69-69
  • 出版社:Babes-Bolyai University, Cluj-Napoca
  • 摘要:This paper aims at presenting and comparing three clustering algorithms in aspect mining: k-means (KM), fuzzy c-means (FCM) and hierarchical agglomerative clustering (HAC). Clustering is used in order to identify crosscutting concerns. We propose some quality measures in order to evaluate the results and we comparatively analyze the obtained results on two case studies.
  • 关键词:clustering, aspect mining.
国家哲学社会科学文献中心版权所有