首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Climate Change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin
  • 本地全文:下载
  • 作者:W Mauser ; T Marke ; S Stoeber
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2008
  • 卷号:4
  • 出版社:IOP Publishing
  • 摘要:Global Climate Change will have regional impacts on the water resources and will force water resources managers and farmers to adapt. Both low-flow and its duration are critical hydrological parameters, which strongly influence the state of aquatic ecosystems as well as power production, reservoir management and industry. Impacts of future climate change is analysed using scenarios for the change of meteorological drivers and regional hydrological simulation models. The project GLOWA-Danube (www.glowa-danube.de) develops integrative modelling techniques combining process knowledge from both natural and social sciences to examine the sustainability of regional water systems as well as water management alternatives in the Upper Danube watershed (A = 77000 km2). Special emphasis is given to changes in low-flow condition. DANUBIA describes the regional water cycle both physical and spatially distributed. It consists of a collection of tightly coupled models, which strictly preserve energy and matter and are not calibrated to maximise their overall predictive abilities. The paper demonstrates that DANUBIA can reproduce the daily discharge for the time period from 1971-2003 with a Nash-Suttcliffe coefficient of 0.84 (gauge Achleiten). Based on a statistical climate simulator 12 realisations of the IPCC A1B climate scenario were used to investigate impacts of climate change during the simulation period of 2011-2060. The change in discharge and frequency of occurrences of low-flow in the watershed for the scenario ensemble were analysed for the outlet gauge. The analysis shows that strong changes were simulated in the frequency of occurrences of low-flow conditions. The changing climate gradually reduces a 50-years NM7Q discharge of today to less than half of its discharge in the year 2060. These results clearly indicate that the expected climate change will strongly alter the low-flow conditions in the Upper Danube watershed.
国家哲学社会科学文献中心版权所有