We study different types of aggregation operators such
as the ordered weighted averaging (OWA) operator and the
generalized OWA (GOWA) operator. We analyze the use of OWA
operators in the Minkowski distance. We will call these new distance
aggregation operator the Minkowski ordered weighted averaging
distance (MOWAD) operator. We give a general overview of this
type of generalization and study some of their main properties. We
also analyze a wide range of particular cases found in this
generalization such as the ordered weighted averaging distance
(OWAD) operator, the Euclidean ordered weighted averaging
distance (EOWAD) operator, the normalized Minkowski distance,
etc. Finally, we give an illustrative example of the new approach
where we can see the different results obtained by using different
aggregation operators.