首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Efficient importance sampling for ML estimation of SCD models
  • 本地全文:下载
  • 作者:Luc BAUWENS ; Fausto GALLI
  • 期刊名称:CORE Discussion Papers / Center for Operations Research and Econometrics (UCL), Louvain
  • 出版年度:2007
  • 卷号:1
  • 出版社:Center for Operations Research and Econometrics (UCL), Louvain
  • 摘要:The evaluation of the likelihood function of the stochastic conditional duration model requires to compute an integral that has the dimension of the sample size. We apply the efficient importance sampling method for computing this integral. We compare EIS-based ML estimation with QML estimation based on the Kalman filter. We find that EIS-ML estimation is more precise statistically, at a cost of an acceptable loss of quickness of computations. We illustrate this with simulated and real data. We show also that the EISML method is easy to apply to extensions of the SCD model.
  • 关键词:stochastic conditional duration, importance sampling.
国家哲学社会科学文献中心版权所有