首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Forecasting Implied Volatility Surfaces
  • 本地全文:下载
  • 作者:Audrino, Francesco ; Colangelo, Dominik
  • 期刊名称:Discussion Papers of the Department of Economics, University of St.Gallen = Diskussionspapiere der Volkswirtschaftlichen Abteilung der Universität St.Gallen
  • 出版年度:2007
  • 卷号:2007
  • 出版社:Universität St. Gallen
  • 摘要:We propose a new semi-parametric model for the implied volatility surface, which incorporates machine learning algorithms. Given a starting model, a tree-boosting algorithm sequentially minimizes the residuals of observed and estimated implied volatility. To overcome the poor predicting power of existing models, we include a grid in the region of interest, and implement a cross-validation strategy to find an optimal stopping value for the tree boosting. Back testing the out-of-sample appropriateness of our model on a large data set of implied volatilities on S&P 500 options, we provide empirical evidence of its strong predictive potential, as well as comparing it to other standard approaches in the literature.
国家哲学社会科学文献中心版权所有