摘要:When ice sheets and glaciers exchange mass with the oceans, the resulting sea level response is spatially variable due to the influence of the mass redistribution on the solid Earth and the gravity field (Farrell and Clark, 1976). The spatial and temporal variability in the sea level response reflect the evolution of grounded ice, as well as the physical structure and properties of the Earth’s interior. Observations of this response can therefore be inverted to infer information on past ice sheet evolution and solid Earth structure. This inversion procedure generally requires the use of a model that relates the relevant model parameters (ice evolution and solid Earth properties) to the observable quantity (sea level). In this short paper, the process of using far-field sea level observations (i.e., those distant from major glaciation centers) to constrain the past evolution of ice sheets is reviewed. Emphasis is placed on two recent papers that use model predictions to determine optimal locations to solve a particular problem (Clark et al., 2002; Milne and Mitrovica, 2008). In doing so, these studies promote a two-way dialog between the observational and modeling communities that is necessary for efficient progress in solving outstanding problems.