摘要:Using emotion detection technologies from biophysical signals, this study explored how emotion evolves during learning process and how emotion feedback could be used to improve learning experiences. This article also described a cutting-edge pervasive e-Learning platform used in a Shanghai online college and proposed an affective e-Learning model, which combined learners’ emotions with the Shanghai e-Learning platform. The study was guided by Russell’s circumplex model of affect and Kort’s learning spiral model. The results about emotion recognition from physiological signals achieved a best-case accuracy (86.3%) for four types of learning emotions. And results from emotion revolution study showed that engagement and confusion were the most important and frequently occurred emotions in learning, which is consistent with the findings from AutoTutor project. No evidence from this study validated Kort’s learning spiral model. An experimental prototype of the affective e-Learning model was built to help improve students’ learning experience by customizing learning material delivery based on students’ emotional state. Experiments indicated the superiority of emotion aware over non-emotion-aware with a performance increase of 91%.