首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:User Simulations for Context-Sensitive Speech Recognition in Spoken Dialogue Systems
  • 本地全文:下载
  • 作者:Oliver Lemon ; Ioannis Konstas
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2009
  • 卷号:2009
  • 出版社:ACL Anthology
  • 摘要:We use a machine learner trained on a combination of acoustic and contextual features to predict the accuracy of incoming n-best automatic speech recognition (ASR) hypotheses to a spoken dialogue system (SDS). Our novel approach is to use a simple statistical User Simulation (US) for this task, which measures the likelihood that the user would say each hypothesis in the current context. Such US models are now common in machine learning approaches to SDS, are trained on real dialogue data, and are related to theories of “alignment” in psycholinguistics. We use a US to predict the user’s next dialogue move and thereby re-rank n-best hypotheses of a speech recognizer for a corpus of 2564 user utterances. The method achieved a significant relative reduction of Word Error Rate (WER) of 5% (this is 44% of the possible WER improvement on this data), and 62% of the possible semantic improvement (Dialogue Move Accuracy), compared to the baseline policy of selecting the topmost ASR hypothesis. The majority of the improvement is attributable to the User Simulation feature, as shown by Information Gain analysis.
国家哲学社会科学文献中心版权所有