首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:On the Enumerability of the Determinant and the Rank
  • 本地全文:下载
  • 作者:Alina Beygelzimer ; Mitsunori Ogihara
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2002
  • 卷号:2002
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:We investigate the complexity of enumerative approximation of two elementary problems in linear algebra, computing the rank and the determinant of a matrix. In particular, we show that if there exists an enumerator that, given a matrix, outputs a list of constantly many numbers, one of which is guaranteed to be the rank of the matrix, then it can be determined in \AC 0 (with oracle access to the enumerator) which of these numbers is the rank. Thus, for example, if the enumerator is an FL function, then the problem of computing the rank is in FL. The result holds for matrices over any commutative ring whose size grows at most polynomially with the size of the matrix. The existence of such an enumerator also implies a slightly stronger collapse of the exact counting logspace hierarchy. For the determinant function DET we establish the following two results: 1. If DET is poly-enumerable in logspace, then DET is in FL. 2. For any prime p , if DET modulo p is ( p − 1 ) -enumerable in Mod_pL, then DET modulo p is in FL.
  • 关键词:counting logspace classes. , determinant , enumerative approximation , Rank
国家哲学社会科学文献中心版权所有