首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Understanding and Comparing Factor-Based Forecasts
  • 本地全文:下载
  • 作者:Jean Boivin (Columbia University,NBER) ; Serena Ng (University of Michigan)
  • 期刊名称:International Journal of Central Banking
  • 印刷版ISSN:1815-4654
  • 出版年度:2005
  • 卷号:2005
  • 期号:dec
  • 出版社:IJCB Publications Fulfillment
  • 摘要:

    Forecasting using "diffusion indices" has received a good deal of attention in recent years. The idea is to use the common factors estimated from a large panel of data to help forecast the series of interest. This paper assesses the extent to which the forecasts are influenced by (i) how the factors are estimated and/or (ii) how the forecasts are formulated. We find that for simple data-generating processes and when the dynamic structure of the data is known, no one method stands out to be systematically good or bad. All five methods considered have rather similar properties, though some methods are better in long-horizon forecasts, especially when the number of time series observations is small. However, when the dynamic structure is unknown and for more complex dynamics and error structures such as the ones encountered in practice, one method stands out to have smaller forecast errors. This method forecasts the series of interest directly, rather than the common and idiosyncratic components separately, and it leaves the dynamics of the factors unspecified. By imposing fewer constraints, and having to estimate a smaller number of auxiliary parameters, the method appears to be less vulnerable to misspecification, leading to improved forecasts.

国家哲学社会科学文献中心版权所有