The intuitionistic fragment of the call-by-name version of Curien and
Herbelin's λ--μ-μ~-calculus is isolated and proved strongly
normalising by means of an embedding into the simply-typed lambda-calculus. Our
embedding is a continuation-and-garbage-passing style translation, the
inspiring idea coming from Ikeda and Nakazawa's translation of Parigot's
λ-μ-calculus. The embedding strictly simulates reductions while usual
continuation-passing-style transformations erase permutative reduction steps.
For our intuitionistic sequent calculus, we even only need "units of garbage"
to be passed. We apply the same method to other calculi, namely successive
extensions of the simply-typed λ-calculus leading to our intuitionistic
system, and already for the simplest extension we consider (λ-calculus
with generalised application), this yields the first proof of strong
normalisation through a reduction-preserving embedding. The results obtained
extend to second and higher-order calculi.