首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Optimal Smoothing for a Computationally and Statistically Efficient Single Index Estimator
  • 本地全文:下载
  • 作者:Wolfgang Härdle ; Oliver Linton ; Yingcun Xia
  • 期刊名称:Econometrics Publications
  • 印刷版ISSN:0969-4366
  • 出版年度:2009
  • 卷号:1
  • 出版社:Suntory Toyota International Centre for Economics and Related Disciplines
  • 摘要:In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical difficulties. Based on local linear kernel smoother, we propose an estimation method to estimate the single-index model without under-smoothing. Under some conditions, our estimator of the single-index is asymptotically normal and most efficient in the semi-parametric sense. Moreover, we derive higher expansions for our estimator and use them to define an optimal bandwidth for the purposes of index estimation. As a result we obtain a practically more relevant method and we show its superior performance in a variety of applications.
  • 关键词:ADE; Asymptotics; Bandwidth; MAVE method; Semiparametric efficiency.
国家哲学社会科学文献中心版权所有