This paper proposes view-point insensitive human
pose recognition system using neural network. Recognition system
consists of silhouette image capturing module, data driven database,
and neural network. The advantages of our system are first, it is
possible to capture multiple view-point silhouette images of 3D human
model automatically. This automatic capture module is helpful to
reduce time consuming task of database construction. Second, we
develop huge feature database to offer view-point insensitivity at pose
recognition. Third, we use neural network to recognize human pose
from multiple-view because every pose from each model have similar
feature patterns, even though each model has different appearance and
view-point. To construct database, we need to create 3D human model
using 3D manipulate tools. Contour shape is used to convert silhouette
image to feature vector of 12 degree. This extraction task is processed
semi-automatically, which benefits in that capturing images and
converting to silhouette images from the real capturing environment is
needless. We demonstrate the effectiveness of our approach with
experiments on virtual environment.