首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Gender Wage Gap : A Semi-parametric Approach with Sample Selection Correction
  • 本地全文:下载
  • 作者:Matteo PICCHIO ; Chiara MUSSIDA
  • 期刊名称:Discussion Paper / Département des Sciences Économiques de l'Université Catholique de Louvain
  • 印刷版ISSN:1379-244X
  • 出版年度:2010
  • 卷号:1
  • 出版社:Université catholique de Louvain
  • 摘要:Sizeable gender differences in employment rates are observed in many countries. Sample selection into the workforce might therefore be a relevant issue when estimating gender wage gaps. This paper proposes a new semi-parametric estimator of densities in the presence of covariates which incorporates sample selection. We describe a simulation algorithm to implement counterfactual comparisons of densities. The proposed methodology is used to investigate the gender wage gap in Italy. It is found that when sample selection is taken into account gender wage gap widens, especially at the bottom of the wage distribution. Explanations are offered for this empirical finding.
国家哲学社会科学文献中心版权所有