首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Object Segmentation under Varying Illumination: Stochastic Background Model considering Spatial Locality
  • 本地全文:下载
  • 作者:Tatsuya Tanaka ; Atsushi Shimada ; Daisaku Arita
  • 期刊名称:Progress in Informatics
  • 印刷版ISSN:1349-8614
  • 电子版ISSN:1349-8606
  • 出版年度:2010
  • 期号:07
  • DOI:10.2201/NiiPi.2010.7.4
  • 出版社:National Institute of Informatics
  • 摘要:

    We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.

  • 关键词:Object detection; adaptive background model; illumination change; parzen density estimation; radial reach filter
国家哲学社会科学文献中心版权所有