首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs
  • 本地全文:下载
  • 作者:Samir Datta ; Raghav Kulkarni ; Raghunath Tewari
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2010
  • 卷号:2010
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class \SPL. Since \SPL\ is contained in the logspace counting classes \L (in fact in \modk\ for all k2), \CeqL, and \PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in \FL\SPL. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier.
国家哲学社会科学文献中心版权所有