首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On the Power of Unambiguity in Logspace
  • 本地全文:下载
  • 作者:A. Pavan ; Raghunath Tewari ; N. V. Vinodchandran
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2010
  • 卷号:2010
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:We report progress on the \NL\ vs \UL\ problem. \begin{itemize} \item[-] We show unconditionally that the complexity class \ReachFewL\UL. This improves on the earlier known upper bound \ReachFewL\FewL. \item[-] We investigate the complexity of min-uniqueness - a central notion in studying the \NL\ vs \UL\ problem. \begin{itemize} \item We show that min-uniqueness is necessary and sufficient for showing \NL =\UL. \item We revisit the class \OptL[logn] and show that {\sc ShortestPathLength} - computing the length of the shortest path in a DAG, is complete for \OptL[logn]. \item We introduce \UOptL[logn], an unambiguous version of \OptL[logn], and show that (a) \NL=\UL if and only if \OptL[logn]=\UOptL[logn], (b) \LogFew\UOptL[logn]\SPL. \end{itemize} \item[-] We show that the reachability problem over graphs embedded on 3 pages is complete for \NL. This contrasts with the reachability problem over graphs embedded on 2 pages which is logspace equivalent to the reachability problem in planar graphs and hence is in \UL. \end{itemize}
  • 关键词:unambiguous logspace
国家哲学社会科学文献中心版权所有