首页    期刊浏览 2025年12月04日 星期四
登录注册

文章基本信息

  • 标题:Testing Dependence Among Serially Correlated Multi-category Variables
  • 本地全文:下载
  • 作者:Pesaran ; M.H. Timmermann, A.
  • 期刊名称:Cambridge Working Papers in Economics / Faculty of Economics ; Department of Applied Economics
  • 出版年度:2006
  • 卷号:1
  • 出版社:Cambridge University
  • 摘要:The contingency table literature on tests for dependence among discrete multi-category variables assume that draws are independent, and there are no tests that account for serial dependencies ? a problem that is particularly important in economics and finance. This paper proposes a new test of independence based on the maximum canonical correlation between pairs of discrete variables. We also propose a trace canonical correlation test using dynamically augmented reduced rank regressions or an iterated weighting method in order to account for serial dependence. Such tests are useful, for example, when testing for predictability of one sequence of discrete random variables by means of another sequence of discrete random variables as in tests of market timing skills or business cycle analysis. The proposed tests allow for an arbitrary number of categories, are robust in the presence of serial dependencies and are simple to implement using multivariate regression methods.
  • 关键词:Contingency Tables, Canonical Correlations, Serial Dependence, Tests of Predictability
国家哲学社会科学文献中心版权所有