首页    期刊浏览 2025年01月11日 星期六
登录注册

文章基本信息

  • 标题:Spiders in Random Environment
  • 本地全文:下载
  • 作者:Christophe Gallesco ; Sebastian Müller ; Serguei Popov
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2011
  • 卷号:VIII
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:

    A spider consists of several, say N, particles. Particles can jump independently
    according to a random walk if the movement does not violate some given
    restriction rules. If the movement violates a rule it is not carried out. We consider
    random walk in random environment (RWRE) on Z as underlying random walk. We
    suppose the environment ! = (!x)x2Z to be elliptic, with positive drift and nestling,
    so that there exists a unique positive constant  such that E[((1 - !0)/!0)] = 1.
    The restriction rules are kept very general; we only assume transitivity and irreducibility
    of the spider. The main result is that the speed of a spider is positive if
    /N > 1 and null if /N < 1. In particular, if /N < 1 a spider has null speed but
    the speed of a (single) RWRE is positive.

  • 关键词:Random Environments;Random Walks;Positive Constants
国家哲学社会科学文献中心版权所有